

A 10-bit S-box generated by Feistel construction from cellular automata

Thomas Prévost, Bruno Martin

Agenda

01
BLOCK CIPHER
ENCRYPTION

O2
HOW ARE BLOCKS
ENCRYPTED?

O3 S-BOXES 04
S-BOX MATHEMATICAL
PROPERTIES

O5
OUR 10-BIT S-BOX

06 RESULTS

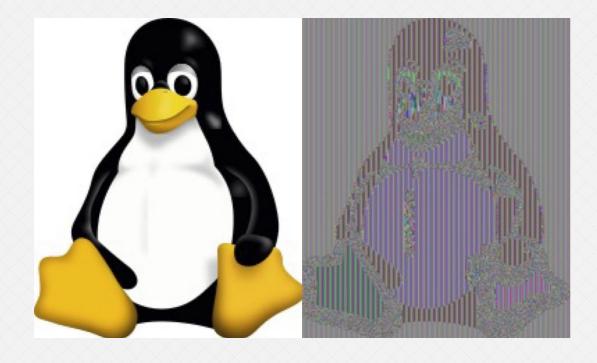
Block cipher encryption

- Commonly used symmetric encryption
- Slicing the message into equal sized blocks

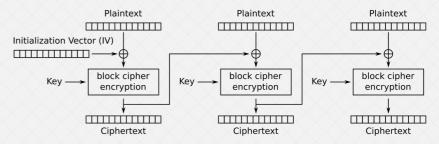
Example: **A**dvanced **E**ncryption **S**tandard (AES),
NIST standardized algorithm for symmetric cryptography

Blocks interdependecy

If each block was encrypted independently:

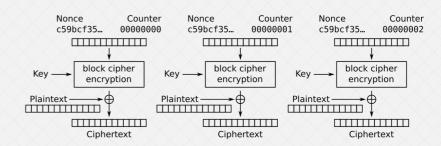


Solution 1: block chaining (CBC): not parallelisable



Cipher Block Chaining (CBC) mode encryption

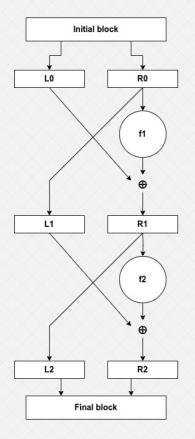
Solution 2: use a counter (GCM, CTR...)



Counter (CTR) mode encryption

Illustration of block encryption structure: Feistel networks

Used in some block cipher algorithms, like Blowfish (AES uses another similar construction)



With:

- *f*₁ and *f*₂: pseudo-random permutations
- ⊕ XOR operator (exclusive OR)
- Feistel network depth = 2

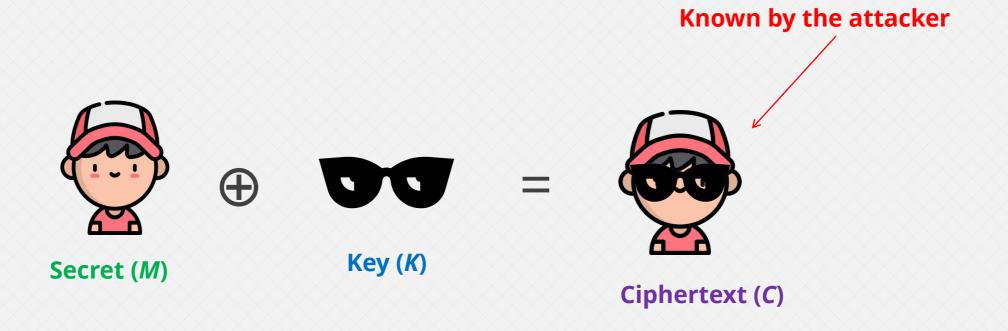
«pseudo-random» permutation:

Permutation that indistinguishable from a truly random permutation by a *«polynomial time adversary»* (an adversary with a computer with limited computing power)

But what are the subpermutations (f_1 , f_2) made of?

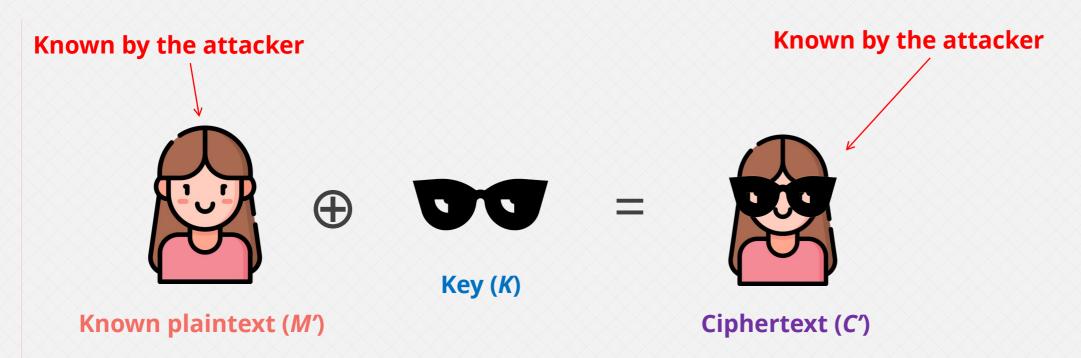
Why do we need S-Boxes?

If block cipher was linear:



Why do we need S-Boxes?

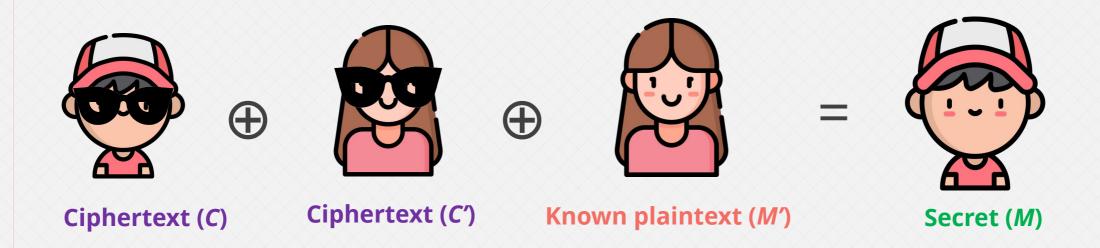
If block cipher was linear:



Example of known plaintext: home page of bank website, before filling your credentials

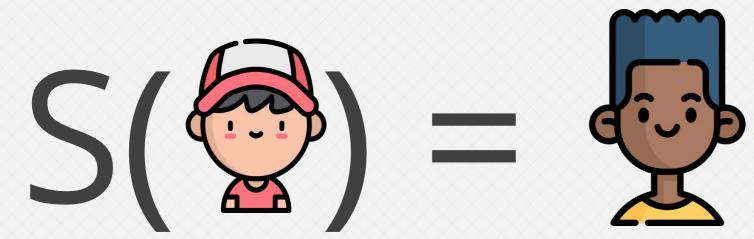
Why do we need S-Boxes?

If block cipher was linear:



This is a **known plaintext attack**

S-Box principle



So a simplified subpermutation round is the S-Box action combined with a linear operation with the key

A S-Box is a **public substitution table** that must be as far as possible from a linear function. As we will see, there are other expected mathematical properties

S-Box example: PRESENT

X	0	1	2	3	4	4	6	7
S(x)	12	5	6	11	9	0	10	13

X	8	9	10	11	12	13	14	15
S(x)	3	14	15	8	4	7	1	2

A S-Box is a public bijective* function Bⁿ → Bⁿ that is as far as possible from a linear function

^{*}There are non-bijective S-Boxes but this is not what we need here

Boolean functions

$$f(x_1, x_2, ..., x_n) = y$$
, with $x_1, x_2, ..., x_n, y \in \mathbf{B}$

Algebraic Normal Form (ANF):

$$y = x_1 * x_2 * x_0 \oplus x_2 * x_4 \oplus x_5 \oplus 1$$

Here deg(f) = 3: size of the largest monomial

Linear function:

if degree = 1 ou degree = 0 (constant function)

There are $2^{\Lambda(2^n)}$ possible *n*-variable Boolean functions

S-Box component functions

For
$$S(x_1, x_2, ..., x_n) = y_1, y_2, ..., y_n$$
, with $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in \mathbf{B}$

There are $2^{n}-1$ component Boolean functions of S-Box S:

- $f_1(x_1, x_2, ..., x_n) = y_1$
- $f_2(x_1, x_2, ..., x_n) = y_2$
- ...
- $f_{n+1}(x_1, x_2, ..., x_n) = y_1 \oplus y_2$
- ...
- $f_{2^{n-1+1}}(x_1, x_2, ..., x_n) = y_1 \oplus y_2 \oplus ... \oplus y_n$

S-Box component functions

Example:

For S defined as:

X	00	01	10	11
<i>S(x)</i>	10	00	11	01

We have:

X	$f_1(x) = y_1$
00	1
01	0
10	1
11	0

X	$f_2(x) = y_2$
00	0
01	0
10	1
11	1

X	$f_2(x) = y_1 \oplus y_2$
00	1
01	0
10	0
11	1

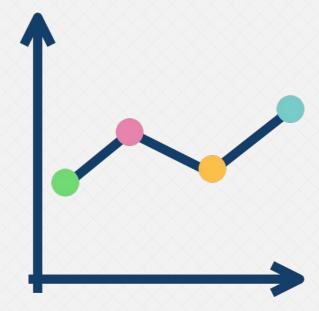
S-Box Mathematical properties

Exhaustive list:

- Min and max algebraic degree
- Algebraic complexity
- Nonlinearity
- Strict Avalanche Criterion (SAC)
- Bit Independence Criterion (BIC)
- Linear Approximation Probability (LAP)
- Differential Approximation Probability (DAP)
- Differential Uniformity (DU)
- Boomerang Uniformity (BU)

Nonlinearity

- For each component function, number of bits that should be switched to have a linear function
- The worst value is the metric



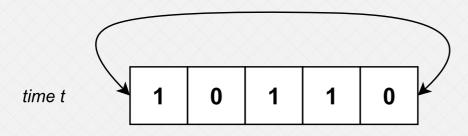
• A high value enables linear cryptanalysis resistance

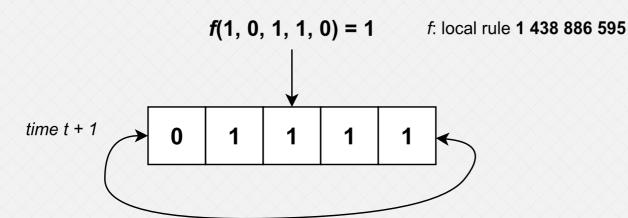
Bit Independence Criterion

• BIC is satisfied when for all input bit k, for all output bits i, j, flipping k^{th} input bit flips i^{th} and j^{th} output bits independently

 The metric is a number between 0 and 1 (closest to satisfy the BIC), 1 the worst and 0 the best

Uniform cellular automaton





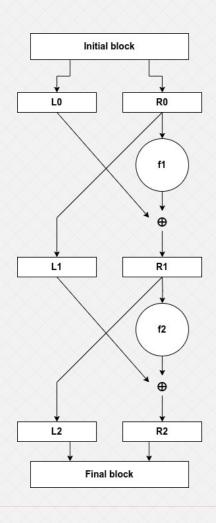
- Ring* of Boolean cells
- At each discrete time step, each cell is updated according to its value and the values of its neighbors, according to a weel chosen local transition function

*In this specific case

With $f(x) = x_0 * x_3 \oplus x_1 * x_3 \oplus x_1 \oplus x_2 * x_3 \oplus x_2 \oplus x_3 * x_4 \oplus x_3 \oplus 1$ 1 438 886 595 is the **decimal representation** of the truth table

Construction of our 10-bit S-Box

Our S-Box itself is a sub 10-bit Feistel network, of depth 11



Empirical construction based on cryptanalysis:

- f_1 : affine function: $f(x) = 5x+3 \mod 31$
- f_2 to f_5 : 1 generation of our automaton
- f_6 : affine function: $f(x) = 7x+11 \mod 31$
- f_7 to f_9 : 1 generation of our automaton
- f_{10} : affine function: $f(x) = 13x+17 \mod 31$
- f_{11} : 1 generation of our automaton

Results

Comparison with AES S-Box (values are normalized to compare a 10-bit S-Box with a 8-bit S-Box)

Property	Our 10-bit S-Box	8-bit AES S-Box	
Min algebraic degree	8	7	
Max algebraic degree	9	7	
Algebraic complexity	1023	255	
Nonlinearity	434 (= 108.5 * 4)	112	
Strict Avalanche Criterion	0.44 - 0.5 - 0.57	0.45 - 0.5 - 0.56	

Results

Comparison with AES S-Box (values are normalized to compare a 10-bit S-Box with a 8-bit S-Box)

Property	Our 10-bit S-Box	8-bit AES S-Box
Bit Independence Citerion	0.124	0.134
Linear Approximation Probability	9.28%	6.25%
Differential Approximation Probability	1.37%	1.56%
Differential Uniformity	14	4
Boomerang Uniformity	24	6

THANK YOU

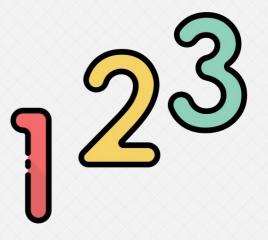
Questions?

Min and max algebraic degree

Size of the largest monomial of each function:

- If $f1(x_1, x_2, ..., x_n) = x_1 * x_2 * x_4 \oplus x_1 * x_2 \oplus x_3$ then deg(f1) = 3
- Largest and lowest degree of each component function

Large values avoid «Low order approximation attack»



Strict avalanche criterion

- When an input bit is flipped, 50% of the output bits must be flipped on average
- The ideal value is 50%

We define a table of size n*n:

• When the i^{th} input bit is flipped, in which proportion is the j^{th} output bit flipped?

Each table value should be as close as possible of 50%

Differential uniformity

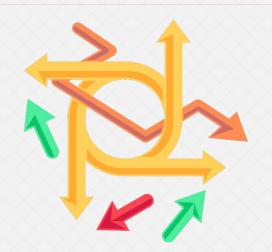
- Gives proximity to a perfectly nonlinear S-Box (impossible for bijectivity)
- For each combination (a, b), differential uniformity table δ gives the number of inputs x such that $S(x) \oplus S(x \oplus a) = b$
- The metric is then $U = \max(\delta)$
- The lowest value is the best

Algebraic complexity

Our S-Box is represented over \mathbb{N} :

$$S(x) = a_0 + a_1 * x + ... + a_{(2^{\wedge}n)-1} * x^{(2^{\wedge}n)-1}$$

mod 2^n avec x, a_0 , a_1 , ... $\in [0, 2^{n-1}]$

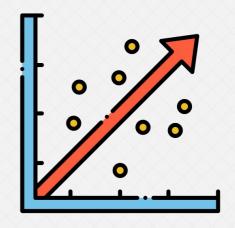


Algebraic complexity is the number of monomials in the univariate polynomial

A large value protects against interpolation attacks

Linear Approximation probability

- Gives an indication about S-Box resistance against linear cryptanalysis
- Defined as the maximum correlation between α^*x et $\beta^*S(x)$, pour tout α et $\beta \in [1, 2^n]$
- Lowest value is the best



Differential Approximation probability

Given by the XOR distribution between input and output

- For each combination $(\Delta x, \Delta y)$, differential probability table DP gives the number of inputs x such that $S(x) \oplus S(x \oplus \Delta x) = \Delta y$
- So DAP = max(DP)

Boomerang Uniformity

- Defines S-Box resistance against boomerang attacks (a variant of differential cryptanalysis)
- For each combination (a, b), Boomerang Connectivity Table (BCT) gives the number of inputs x such that:

$$S^{-1}(S(x) \oplus b) \oplus S^{-1}(S(x \oplus a) \oplus b) = a$$

- $BU = \max(BCT)$
- The **lowest value is the best** against boomerang attacks

